

Simulating the use of biomass in electricity with the

Green Electricity Simulate (GES) model:

An application to the French power generation

Vincent Bertrand

Laboratoire d'Économie Forestière (AgroParisTech-INRA)

Climate Economics Chair

Vincent Bertrand

34th International Energy Workshop

2. Presentation of the GES model

3. Application to France

- Interest for biomass in electricity

Biomass = Renewable Energy Source (RES)

 \implies Unable increasing the share of RES in power generation

• No CO_2 emissions (carbon cycle)

 \implies Reduction of CO₂ emissions when substituted for fossils

- Options for biomass-based electricité

- **Dedicated biomass power plants** : Power plants that only use biomass
- Co-firing in coal plants : Burning biomass and coal in coal plants

Up to 80% of potential biomass demande form electricity sector in Europe (technical potential with existing fleet)

E Laboratoire d'**E**conomie

Introduction : Motivations

- Objective

• Simulation tool to analyse questions about biomass-based electricity

- Contribution to literature

- Co-firing not taken into account in existing electricity simualtion models (*e.g.* Rentizelas *et al.*,2012; Kannan and Turton, 2013)
- <u>Contribution of the model</u> : Analyse of co-firing and induced effects

- Questions that can be investigated with the model

- Biomass demand from electricity in different price and policy contexts? Contribution of co-firing?
- Influence of carbon price?
- What qualities of biomass are consumed?
- Impact of co-firing on decisions about prolongation/decommissioning of out-of-lifetime coal plants?
- Consequences if co-firing is accounted for as a RES?

2. Presentation of the GES model

3. Application to France

Presentation of the GES model

- General presentation

- Minimisation of generation and investment costs in electricity = Partial equilibrium for 2010-2030 (annual periods + intra-annual periods)
- Different economic and technical constraints
 - \rightarrow Clearing (supply=demand)
 - \rightarrow Capacity constraint : Generation \leq Available Capacities
 - \rightarrow Constraint about the share of RES in power generation
 - -> Constraints associated to co-firing : Losses on efficiency of coal plants ; Quantity of biomass depending on quality
 - \rightarrow Etc
- Three compartments in the model
 - → **Dispatch** = Optimal dispatch of existing fleet (merit order) to meet power demand in different hours in the year
 - → Investment = investment in new units to maintain and increase the size of the fleet so as to meet increasing power demand and adapt to decommissioning of out-of-lifetime units

Presentation of the GES model

- Generation technologies

Summary of Main Technologies	Main fuel categories	Fuels included in the categories	
Nuclear	Oil	01 01	
Bituminous Coal (hard coal)	Natural Gas	Natural Gas	
Lignite Coal	Coal	Bituminous coal (hard-coal)	
Oil and Bio-liquid (biofuel)	004	Lignite	
Gas and Biogas	Uranium	Uranium	
Combined Cycle (CC) Gas turbine	quality	Torrefied Pellets	
Dedicated Biomass	Solid Biomass	Wood Chips	
Hydroelectricity		Agricultural Residues	
Solar PV	Waste Mixed Grade Waste		
Wind	Biogas	Biogas	
Geothermal	Bio-Liquid Bio-Liquid		
I			

Each technology can use one or several types of fuels

- → Dedicated biomass power plants = All the solid biomass fuels
- → Centrales Charbon = Charbon + Tous combustibles biomasse solide

- Data Base = *World Electric Power Plants* (WEPP) from Platts
 - \rightarrow Inventory for power generation capacities in Europe (and in the whole world)
 - \rightarrow Installed capacities and Years of commissioning for all the power plants

limate

- **Co-firing** : Configuration of coal plants
 - In each time, each coal plant can be used under two possible configurations
 - \rightarrow Classical configuration (only coal

or

- \rightarrow Co-firing configuration (coal + biomass)
- Efficiency (conversion) rate of coal plants depends on the configuration
 - \rightarrow Efficiency rate of classical > Efficiency rate of co-firing
- Losses on the efficiency rate of coal plants under co-firing
 - \rightarrow Presence of air and increased moisture content with biomass = Reduced efficiency rate for coal plants

Presentation of the GES model

- Co-firing : Effect of biomass quality
 - Quantiy of biomass in coal plants depends on the biomass quality
 - \rightarrow More losses with low quality biomass
 - → The quantity of biomass that can be incorporated in coal plants (*incorporation rate*) increases when the biomass quality increases

limate

conomics

• Trade-off in the choice about the quality of biomass

• Illustration of effects : CO2 emission factor of coal plant

Charbon – Classique tCO2/MWhelec – 0,94	Charbon – Classique	Charbon – Co-firing déchets agricoles (5% de biomasse dans la centrale)	Charbon – Co-firing biomasse torréfiée (50% de biomasse dans la centrale)	
	0,9	0,47	Highest quality	
cent Bertrand 34 th International Energy Workshop				Abu Dhabi – 201

2. Presentation of the GES model

3. Application to France

– Question 1 : Impact of co-firing on the electricity mix

- Question 2 : Biomass demand in the power sector

Focus on :

- \rightarrow Sensibility with respect to carbon price
- → Consequences if co-firing is accounted for as a renewable

Climate Conomics

Results for France : Electricity mix

- Sensibility with respect to carbon price : Generation Capacities

• Increase in the carbon price

- \rightarrow Reduction in Coal capacities
- \rightarrow Increase in Gas capacities
- \rightarrow Increase in Wind and Biogas capacities

• Consequences of co-firing

- \rightarrow Weaker reduction in Coal capacities
- \rightarrow Weaker increase in Gas capacities
- → Weaker increase in Wind and Biogas capacities
 - ☐ Increase in coal profitability with respect to low carbon competing technologies

Decommissioning of coal plants

- → Reduction in coal capacities when carbon carbon reaches 100 Euros = *Carbon Effect*
- → Weaker reduction when co-firing is allowed in the model = *Co-firing Effect*

Vincent Bertrand

34th International Energy Workshop

Abu Dhabi – 2015

Climate Economics Chair Peri-Despite Livery CD Climat

- Recognizing co-firing as a renewable (RES)

- If co-firing is accounted for as a RES, coal is substituted for *traditional* RESs
 - \rightarrow No investment in *traditional* RESs
 - Social acceptability?

Results for France : Biomass demand

- Sensibility with respect to carbon price : Threshold effect

• From 0 to 50 Euros = Increase in total biomass demand

- \rightarrow Weak increase in demand from dedicated biomass units
- \rightarrow Strong increase in demand from co-firing
 - *Effect 1* = Coal plants move from classical to co-firing configuration (increase in biomass demand)

Effect 2 = Fewer investment in coal = Fewer coal capacities to trigger biomass demand

 \square *Effect 1* > *Effect 2* = Increase in total biomass demand

- From 50 to 100 Euros = Decrease in total biomass demand
 - \rightarrow No increase from dedicated biomass units
 - → Strong decrease from co-firing = Co-firing is substantially less profitable compared with zero-carbon technologies
 - *Effect I = All the coal plants run the co-firing configuration*
 - *Effect 2* = No more investment in coal plants + Decommissioning of coal pants = Strong decrease in coal capacities (and associated biomass demand)

 \longrightarrow Effect 1 < Effect 2 = Decrease in total biomass demand

Results for France : Biomass demand

- Sensibility with respect to carbon price : Move towards quality

• From 0 to 50 Euros

- → Wood Chips (WC) substituted for Agricultural Residues (AR) = Increase in quality
- From 50 to 100 Euros
 - → High quality biomass fuels = Wood Pellets (WP) and torrefied Pellets (TOP)

Move towards quality when the carbon price increases

When the quality increases there is more biomass in coal plants (higher incorporation rate) = Reduced carbon cost

2. Presentation of the GES model

3. Application to France

- Biomass demand

- \rightarrow Threshold effect with respect to carbon price
- \rightarrow Move towards quality when the carbon price increases

- Impact of co-firing on the electricity mix

- \rightarrow Co-firing can induce prolongation of coal plants that would be decommissioned otherwise
- \rightarrow Recognizing co-firing as a RES = Substitution of coal for *traditional* RESs
 - > No investment in *traditional* RESs = Social Acceptability?

Conclusion : Perspectives

- Works in Progress

- Competition to access woody resources in France between electricity and other (traditional) sectors that consumes wood = Coupling with the FFSM (*French Forest Sector Model*) model
- Consequences of co-firing in German electricity = Effect on prolongation/decommissioning decisions for old German coal stations?

- Projects with GES

GES France-Regions = Spatialization of the GES-France at the French-region level = Effect of co-firing on local resources in regions with large coal plants (*e.g.* the Gardanne co-firing project in France)?

GES Europe = Connecting all the country modules (current version) into a single European model = Competition between national power sectors to access the European biomass resource?

Thank you for your attention

vincent.bertrand@chaireeconomieduclimat.org

More information and documentation on the GES website :

Green Electricity Simulate Project

Bertrand, V., 2013. Switching to biomass co-firing in European coal power plants: Estimating the biomass and CO2 breakeven prices. *Economics Bulletin*, 33 (2), 1535-1546.

References

Bertrand, V., Dequiedt, B., and E, Le Cadre., 2014. Biomass for Electricity in the EU-27: Potential demand, CO2 abatements and breakeven prices for co-firing, *Energy Policy*, 73, 631-644.

Bertrand, V., and E, Le Cadre., 2014. Simulating the use of biomass in electricity with the Green Electricity Simulate model: An application to the French power generation. Working Paper.

Caurla, S., 2012. Modélisation de la filière forêt-bois française. Évaluation des politiques climatiques. Thèse de doctorat.

Caurla, S., Delacote, P., Lecocq, F., and Barkaoui, A., 2013. Stimulating fuelwood consumption through public policies: An assessment of economic and resource impacts based on the French Forest Sector Model. *Energy Policy*, 63, 338-347.

limate conomics